DISCOURSE
Emerging trends and recommendations

CERVICAL CANCER PREVENTION
Promises and perils in a changing landscape

Eduardo L. Franco, MPH, DrPH, Marie-Hélène Mayrand, MD, MSc, FRCSC and Helen Trottier, MSc PhD

Cervical cancer is the malignant neoplastic disease for which public health prevention initiatives have had the greatest success. Organized or opportunistic screening with the Papanicolaou cytology technique (Pap test) has reduced the cervical cancer burden by about 75% in high-income countries during the last 50 years.

In comparison, lung cancer control via tobacco cessation is still far from its target of 80% reduction in disease incidence, and screening efforts for other neoplasms have much less ambitious targets.

In Canada, the early experiences of British Columbia and other provinces are considered a model for implementation of organized programs. Unfortunately, however, few developing countries have fully reaped the benefits of screening. Cervical cancer remains an important public health problem: with 493,000 new cases diagnosed in 2002 — 83% of them in developing countries — it is the second most common malignant neoplasm affecting women worldwide. The highest-risk areas for cervical cancer are in Southern and Eastern Africa, Melanesia, the Caribbean, and Central and South America, with average incidence rates well above 30 per 100,000 women per year (Figure 1, page 10). Less than 50% of women affected by cervical cancer in developing countries survive longer than 5 years whereas in developed countries the 5-year survival rate is about 66%.

Recent understanding of the necessary causal connection between infection by certain types of human papillomavirus (HPV) — the so-called high-risk, or oncogenic types — and cervical cancer has paved the way for new approaches to cervical cancer prevention. For secondary prevention (i.e., screening), both the Pap test and a DNA test for the oncogenic HPV's are available. HPV vaccination has also emerged as a promising new front in primary prevention of cervical cancer.

SCREENING TECHNOLOGIES
The available screening technologies can be classified into morphology- and molecular-based approaches to recognizing cytologic or tissue-level abnormalities or molecular markers.
consistent with cervical intraepithelial neoplasia (CIN) or cervical cancer. Further distinctions can also be made based on the use of aided or unaided microscopy or of physical and electro-optical properties. Table 1 outlines the various technologies considered in cervical cancer screening, most of which are still under evaluation.

Cervical cancer screening imposes a substantial economic burden. In most Western countries, for each new case of invasive cancer found by Pap cytology approximately 50–100 other cases yield abnormal smears consistent with precursor lesions requiring clinical management, such as squamous intraepithelial lesions (SIL), low- (LSIL) and high-grade (HSIL) lesions. Further, twice as many cases are found of equivocal or borderline atypias, known as atypical squamous cells of undetermined significance (ASC-US). ASC-US and SIL findings account for up to 10% of all Pap smears processed in screening programs in Western countries. Despite its success, Pap cytology has important limitations. It is based on highly subjective interpretation of morphologic alterations present in cervical samples that must be collected with proper attention to sampling transformation zone cells. The highly repetitive nature of screening many smears leads to fatigue and invariably to errors in interpretation. A recent meta-analysis of studies unaffected by verification bias indicated that the average sensitivity of Pap cytology to detect CIN was 51% and average specificity was 98%. The high false-negative rate has been the Pap test’s most critical limitation, as false-negative diagnoses have important medical, financial and legal implications. In North America false-negative smears are among the most frequent reasons for medical malpractice litigation. The advent of liquid-based cytology has helped mitigate the problem of efficiency in processing smears but the limitations of cytology remain. To compensate for the low sensitivity of individual testing, women whose initial smear is negative should be retested at least twice over the next 2–3 years, before they can be safely followed at 2- or 3-year intervals. This brings the screening program sensitivity to acceptable levels but requires safeguards to ensure compliance, coverage and quality — costly undertakings that have worked well only in western industrialized countries. Many developing countries that have invested in screening programs have yet to witness a reduction in cervical cancer burden.

Of the molecular-based technologies for cervical cancer screening, HPV testing is eliciting the greatest interest, with 2 main technologies. The hybrid capture (HC) assay, currently the most widely used in clinical and screening settings, is a nucleic acid hybridization assay with signal
amplification. It uses microplate chemiluminescence for the qualitative detection in cervical specimens of HPV DNA of 13 high oncogenic-risk genotypes associated with cervical cancer: 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68. Different polymerase chain reaction (PCR) protocols have also been used to detect HPV. Based on target amplification with type-specific or consensus (general) primers followed by hybridization with specific oligoprobes, PCR techniques to detect HPV will soon be commercially available.

HPV testing found its first application niche in triaging ASC-US smears. A recent meta-analysis found it to be a suitable and cost-effective chain reaction in deciding whether or not such cases need to be referred for colposcopy. Several studies assessing the value of HPV testing compared to the Pap test as a cervical cancer screening tool in European, African, Asian, Latin American and North American populations have found HPV testing to have 25% to 35% higher sensitivity than cytology in absolute terms but 5% to 10% lower specificity for detecting high-grade lesions. Screeningsensitivity, but slightly less specific than conventional or liquid-based cytology.

A few large randomized controlled trials (RCTs) of HPV testing in primary cervical cancer screening are currently ongoing. Of note are the UK HART (HPV in Addition to Routine Testing) investigation, the UK ARTISTIC trial (A Randomized Trial In Screening To Improve Cytology),

TABLE 1. Technologies used for cervical cancer screening and their characteristics

<table>
<thead>
<tr>
<th>Approach</th>
<th>Technology</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological, recognition of cellular level abnormalities</td>
<td>Pap test</td>
<td>Standard, oldest medical test, proven effectiveness in reducing incidence and mortality. Suitable for most settings, particularly middle- and high-income countries.</td>
</tr>
<tr>
<td></td>
<td>Liquid-based cytology</td>
<td>Cleaner, more reproducible test alternative to the conventional Pap test. Can be automated. Dependent on proprietary technology. Suitable for high- and middle-income countries.</td>
</tr>
<tr>
<td></td>
<td>Automated cytology</td>
<td>Useful in settings with mandated quality control of conventional cytology. Dependent on proprietary technology. Suitable for high-income countries only.</td>
</tr>
<tr>
<td>Morphological, recognition of cellular level abnormalities with molecular staining</td>
<td>P16INK4A antigen detection</td>
<td>Experimental, leads to more reproducible reading of Pap smears prepared with liquid cytology. Better distinction of relevant dysplastic features.</td>
</tr>
<tr>
<td>Morphological, recognition of tissue level abnormalities with or without low-level magnification</td>
<td>Simple visual inspection (downstaging)</td>
<td>Real-time but ineffective, because high-false positive rate leads to a high rate of referrals.</td>
</tr>
<tr>
<td></td>
<td>Visual inspection with acetic acid (VIA), Synonyms and variations: direct visual inspection (DVI), aided visual inspection (AVI), VIA with low-level magnification (VIAM), visual inspection with Lugol's iodine (VILI)</td>
<td>Real-time, sensitivity equal or better but lower specificity than conventional Pap cytology. Suitable for low-income countries. Investigations ongoing to obtain proof of effectiveness in reducing incidence and mortality.</td>
</tr>
<tr>
<td></td>
<td>Cervicography</td>
<td>Sensitivity lower and specificity comparable or lower (setting-dependent) than conventional cytology. Dependent on proprietary technology. Suitable for high-income countries but has lost favour in recent years.</td>
</tr>
<tr>
<td>Morphological, recognition of tissue level abnormalities based on physical/optical properties</td>
<td>Spectroscopy and speculoscopy</td>
<td>Experimental, real-time. Promising, but lacks adequate evidence of comparative efficacy. Sensitivity and specificity seems comparable to VIA (speculoscopy).</td>
</tr>
<tr>
<td>Molecular testing</td>
<td>HPV testing</td>
<td>More sensitive but slightly less specific than conventional or liquid-based cytology. In combination with cytology may allow safely increasing screening intervals, thus lowering costs. Can be automated. Dependent on proprietary technology. Suitable for high- and middle-income countries and possibly for low-income countries with no screening programs.</td>
</tr>
</tbody>
</table>
and the CCCaST (Canadian Cervical Cancer Screening Trial). Embedded in ongoing opportunistic or organized screening programs, these RCTs will provide the level of evidence necessary for public health policy makers to make informed decisions about the future of their cervical cancer screening programs.

PREVENTION VIA HPV VACCINATION

Vaccination is among the most successful and least costly of all public health interventions. Primary prevention of cervical cancer can be achieved through prevention and control of genital infection with oncogenic HPV types. Two types of HPV vaccines are currently being developed: prophylactic vaccines to prevent HPV infection and associated diseases, and therapeutic vaccines to induce regression of precancerous lesions or remission of advanced cervical cancer. The latter vaccine type has not shown encouraging results and cannot be considered a primary prevention strategy because it targets existing lesions. Here, we consider only progress with prophylactic vaccines.

HPV DNA-free virus-like particles (VLPs) synthesized by self-assembly of fusion proteins of the major capsid antigen L1 (or of both L1 and L2) induce a strong humoral response with neutralizing antibodies. VLPs have thus become the best candidate immunogen for HPV vaccine trials. In electron microscopy preparations, VLPs are indistinguishable from real viruses. Initial results indicate that protection against development of persistent infection with HPV types 16 and 18 is nearly 100% in up to 5 years of followup. Table 2 summarizes the characteristics of the Phase II trials published to date. Ongoing Phase III studies will likely corroborate the preliminary findings concerning the efficacy of prophylactic HPV vaccines against high-grade preneoplastic cervical lesions. Mathematical models of their impact have also suggested a substantial public health benefit in most geographical areas.

INCORPORATING HPV VACCINATION IN EXISTING CERVICAL CANCER PREVENTION PROGRAMS

The 2 candidate vaccines now nearing commercialization (Gardasil™ and Cervarix™) protect against the 2 main HPV types that together cause about 75% of all cervical cancers, HPV 16 and 18. Although a small degree of...
cross-protection against other oncogenic HPVs may be expected, a gradual change may potentially arise in the distribution of HPV types in vaccinated populations, reflecting the vacated ecologic niches following the elimination of HPV 16 and 18 (a yet unproven phenomenon known as type replacement). Also, the type-specific immunity conferred by vaccination may wane over periods extending much beyond 5 years. Other areas of concern that will take many years to be settled via scientific evidence include the choice of the ideal age for vaccination, whether women who have been previously exposed to HPV can be protected, and whether men should be vaccinated to achieve herd immunity. While much is yet to be learned about these and other vaccine-related issues, substantial streamlining or restructuring of screening programs are clearly needed to keep cervical cancer prevention cost-effective following the incorporation of HPV vaccination.

Indeed, assuming that HPV vaccination will become an accepted approach for primary prevention of cervical cancer, it is essential to consider the impact on screening practices. Implementation of HPV vaccination will likely be a gradual and diverse process reflecting specific health policy environments. In some countries, vaccination may be adopted as universal policy for all adolescents and young women and covered by a centrally managed healthcare system. In other settings, the costs of vaccination may be shared between the public sector and individuals. It is also conceivable that some countries may not opt at all for covering the costs of vaccination and may leave the decision to healthcare providers and their patients. Finally, some may not even consider vaccination due to other pressing healthcare priorities. Individual countries’ perceptions regarding the cost-effectiveness of vaccination as a primary prevention measure will no doubt be the main deciding factor for whether or not to adopt vaccination, a decision requiring careful consideration of different possible modifications to existing screening programs.

Short-term impact

In most Western countries, widespread vaccination of young women may decrease rates of referral to colposcopy to 60% or less of the existing caseloads. A small proportion of currently-referred cases are associated with low oncogenic-risk HPVs, such as HPVs 6 and 11. The quadrivalent Gardasil vaccine, which includes the latter 2 types as immunogens, may thus lead to a more pronounced reduction in abnormalities than the bivalent Cervarix vaccine, perhaps by an extra 10% in absolute terms. These reductions will no doubt translate into initial savings but may entail untoward consequences related to personnel training and degradation of performance standards in Pap cytology. The positive predictive value of Pap cytology will decline in populations with high vaccine uptake because clinically relevant lesions will become less common. Vaccination may also lead to a decline in the performance of cytology by causing a decrease in the signal (squamous abnormalities) to noise (inflammation and reactive atypias) ratio for those reading and interpreting smears: the lower abnormality rate may lead to fatigue and missing less conspicuous lesions, reducing sensitivity, while fear of this may lead to more overcalls of benign abnormalities, reducing specificity.

Reduction in caseloads will be a function of 2 factors: the overall uptake of HPV vaccination by successive cohorts of adolescents and young women targeted by vaccination, and the time it takes for protected women to reach the age when they become clients of screening. In countries without a centrally managed healthcare system (e.g. the US) uptake of vaccination will require much effort in educating the public and healthcare providers. While women may welcome HPV vaccines there may be dissent as well, mostly stemming from the parental perception that vaccination may foster permissive behaviour among adolescents. Vaccinated adolescents will reach the age of cervical cancer screening within 3 years after the onset of sexual activity. Therefore, the impact on screening and management caseloads will initially be minimal for women vaccinated between the ages of 10 and 18 years. The benefits in risk reduction among young adult women receiving the vaccine, however, will be realized almost immediately because of the short latency between the averted acquisition of HPV infection and the appearance of low-grade or equivocal cervical abnormalities.

Possible long-term public health outcomes of HPV vaccination

Even with high uptake, a statistically noticeable reduction of the burden of cervical cancer via HPV vaccination is unlikely for at least a decade or longer because of the latency required for averted high-grade lesions to progress to invasive disease. A paradoxical situation may arise if high vaccine uptake occurs primarily among adolescents and young women who also comply with screening recommendations, because reduced ASC-US and SIL abnormalities would likely be seen nearly exclusively among such women. With fewer abnormalities identified on screening, triage and management caseloads would be reduced. But because of their high compliance with screening these women would not be the ones destined to develop cervical cancer. On the other hand, if non-vaccinated women are less likely to be screened their cervical lesions will progress undetected until invasion occurs, with no precancerous lesions averted.

PROSPECTS

Given the potential problems in Pap cytology performance due to a reduction in lesion prevalence, HPV testing would be an ideal primary cervical cancer-screening test, with Pap cytology reserved for triage settings, i.e. to assist management of HPV-positive cases. Another key advantage of using HPV testing as the primary screening tool in prevention programs is the opportunity to create HPV infection registries with the ability to link test results from the same women over time, thus allowing an efficient and low-cost strategy for monitoring long-term protection among vaccinated women.

In conclusion, much has been achieved during the last 10 years from research on screening and prevention of cervical cancer. Progress has been grounded on the recognition that HPV infection is the central, necessary cause of this important neoplastic disease. To permit cost-effective reductions in the burden of cervical cancer, however, screening and other...
preventive strategies must be adapted to one another. The next 5–10 years will bring many changes in practice standards and guidelines, as research on the subject continues to provide acceptable evidence for public health action. Canadian oncologists and primary care providers will do well to observe closely the unfolding story of cervical cancer prevention.

References

Acknowledgments

Cervical cancer research activities in the Division of Cancer Epidemiology at McGill University have been funded by an endowment from the Cancer Research Society and multiple grants from the Canadian Institutes of Health Research (CIHR), National Cancer Institute of Canada (NCIC), and US National Institutes of Health. The authors have also received salary awards from the CIHR (Distin-
guished Scientist to EL), Fonds de la recherche en sante du Quebec (Chercheur National to EL) and NCIC (Post-MD Research Fellowship to MRH). Supplemental unconditional financial support to the work of the division has been provided by Merck-Frosst and Glaxo SmithKline.