FEATURE

Literature-based followup recommendations

PART 4: Myelodysplastic and myeloproliferative syndromes and management of iron overload in multiply-transfused oncology patients

Malcolm Brigden, MD, FRCPC, FACP; Shahid Ahmed, MD, FRCPC; Richard Wells, MD, PhD, FRCPC

ABSTRACT

Many smaller Canadian cancer centres or those employing hematologists to manage malignant hematology as a community service often follow patients with myelodysplastic or myeloproliferative syndromes. Similarly, most cancer programs will have a number of patients dependent on regular transfusion support who also require management for potential iron overload. There are few randomized studies in these conditions and best practice is, by necessity, literature-based. This article reviews practical aspects of followup of these syndromes, as well as management of iron overload in the multiply-transfused oncology patient.

Key words: myelodysplastic disorders, myeloproliferative syndromes, hematology, transfusion, myelofibrosis, thrombocytopenia, polycythemia, iron chelation, iron overload.

Malcolm Brigden, MD, FRCPC, FACP is Medical Director of the Algoma District Cancer Program in Sault Ste. Marie, and Associate Professor of Medicine at the Northern Ontario School of Medicine. Email: BrigdenM@sah.on.ca. Shahid Ahmed, MD, FRCPC is a Medical Oncologist at the Saskatchewan Cancer Agency in Saskatoon and Clinical Associate Professor of Medicine at the University of Saskatchewan College of Medicine. Email: shahid.ahmed@saskcancer.ca. Richard A. Wells, MD, DPhil, FRCPC is a Scientist and Director in the Odette Cancer Research Program (molecular and cellular biology), Sunnybrook Research Institute; Co-Director in the Myelodysplastic Syndromes Program, Odette Cancer Centre; Assistant Professor, Department of Medical Biophysics, University of Toronto; and Medical Advisor for the Aplastic Anemia and Myelodysplasia Association of Canada. Email: richard.wells@sunnybrook.ca

The myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal stem cell disorders characterized by inefficient hematopoiesis, peripheral blood cytopenias and risk of progression to acute myeloid leukemia (AML).1,2 The 2008 World Health Organization (WHO) classification of MDS is the current standard and is based on dysplastic cell lineages, percent marrow blasts, the presence of ring sideroblasts and cytogenetic abnormalities.2 Good prognostic features includes partial deletion of chromosome 5q (5q– syndrome) or deletion of the Y chromosome, while complex karyotype abnormalities or deletions experience poorer outcomes.1,2 Primary MDS must be distinguished from secondary MDS occurring post antineoplastic or immunosuppressive therapy (therapy-related MDS or t-MDS), which carries a uniformly worse prognosis.

<table>
<thead>
<tr>
<th>TABLE 1. International Prognosis Scoring System (IPSS) in Myelodysplastic Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk scores*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prognosis variables</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow blast (%)</td>
<td><5</td>
<td>5-10</td>
<td>-</td>
<td>11-20</td>
<td>21-30</td>
</tr>
<tr>
<td>Karyotype</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cytophenias</td>
<td>0/1</td>
<td>2/3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Risk groups according to IPSS scores: Low = 0; Intermediate-1 = 0.5-1.0; Intermediate-2 = 1.5-2.0; High = 2.5-3.5. Adapted from Greenberg P et al. Blood 1997;89:2079-88.
The myeloproliferative diseases (MPD) include chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and idiopathic myelofibrosis (MF). CML is characterized by a specific chromosome abnormality, the Philadelphia chromosome (Ph; followup was described in Part 3 of this series). There has been a growing recognition that the other 3 conditions probably represent a continuum rather than separate clinical entities. This concept was reinforced by the discovery of the Janus kinase 2 (JAK2) mutation in 2005 and the subsequent realization that it was present in more than 95% of patients with PV and approximately 50-60% of cases of ET and MF. There is also evidence that the severity of the disease process is related to overall JAK2 allele burden, with JAK2-positive ET patients having high-risk disease without therapy is only approximately 12 months. Survival in lower-risk disease varies from several months to more than a decade.

Despite the variable risk of transformation to AML, the majority of deaths are due to bone marrow failure resulting in infection, transfusion-dependent anemia with iron overload or hemorrhage. Treatment options include supportive care, low-intensity therapy and high-intensity therapy including stem cell transplant, currently the only curative option (Figure 1). To date, because there is no evidence that treating asymptomatic patients improves long-term survival, treatment goals are supportive and centre on symptom control and quality of life. Transfusion support, infection management and judicious use of growth factors all play a therapeutic role. For patients requiring active therapy, lenalidomide results in a cytogenetic response in 50% of patients with 5q− syndrome. Lenalidomide also significantly reduces transfusion requirements in this population. For patients with an intermediate-2 or high-risk IPSS score with good performance status, treatment options are commonly the DNA-hypomethylating agents, among which 5-azacytidine has shown an overall survival benefit.

THE MYELOPROLIFERATIVE SYNDROMES

The myeloproliferative diseases (MPD) include chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and idiopathic myelofibrosis (MF). CML is characterized by a specific chromosome abnormality, the Philadelphia chromosome (Ph; followup was described in Part 3 of this series). There has been a growing recognition that the other 3 conditions probably represent a continuum rather than separate clinical entities. This concept was reinforced by the discovery of the Janus kinase 2 (JAK2) mutation in 2005 and the subsequent realization that it was present in more than 95% of patients with PV and approximately 50-60% of cases of ET and MF. There is also evidence that the severity of the disease process is related to overall JAK2 allele burden, with JAK2-positive ET patients having...
a higher thrombotic rate similar to that of PV vs wild-type ET cases, and patients with PV and MF more likely to be homozygous.7-9

While future therapeutic attention will increasingly focus on genetic profiling, the updated World Health Organization (WHO) diagnostic criteria are still helpful in confirming the diagnosis for each entity (Table 2). Bone marrow morphology examination remains essential for a confirmation of the diagnosis of both ET and MF. Similarly, it is important to ensure that the diagnosis of MF is only applied to patients with evidence of characteristic clinical features such as anemia, splenomegaly, constitutional symptoms or a leukocytoblastic blood film.9,11

In terms of followup and treatment considerations for ET and PV, thrombosis remains the principal mortality risk, secondary only to progression to MF or AML. Thrombosis rates range from 2.5%/patient-year in younger asymptomatic PV patients to 5%/patient-year in those >65 years or with prior history of thrombosis. For patients with ET, the corresponding figures are 1.9% in the low-risk and 3% in the high-risk patient groups.7,9,12

Arterial thrombosis, such as pulmonary embolus, accounts for 60–70% of events. With venous thrombosis, lower-extremity and intra-abdominal locations (hepatic portal and mesenteric) are common. Involvement of the microcirculatory system is typical for ET, manifesting as erythromelalgia, transient ischemic attacks and transient visual or hearing defects.9,11-12 While erythromelalgia clearly appears to be secondary to abnormal platelet number or function, the pathogenesis of thrombosis in MPD in general is undoubtedly multifactorial. Red cell mass and viscosity, platelet function and leukocyte-vascular endothelial interactions all contribute.7,9,12 Several studies have confirmed that a lowering of the platelet count in isolation has no influence on the subsequent incidence of thrombosis.7,9

The rates for hemorrhage at diagnosis vary from 1.7–20% in PV and 3.6–37% for ET. The majority of hemorrhagic events are minor, involving the skin, mucous membranes or gastrointestinal tract. Reducing the number of platelets lessens

TABLE 2. Revised WHO criteria for the myeloproliferative diseases*

| Poly-

cythemia

| vera

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hemoglobin >185 g/L in men, >165 g/L in women, or hematocrit >52 in men and >48 in women, or other evidence of increased red cell volume</td>
<td>1. Bone marrow biopsy showing hypercellularity with trilineage growth and pancytopenia</td>
</tr>
<tr>
<td>2. Presence of JAK2617V>F or other functionally similar mutation</td>
<td>2. Serum erythropoietin level below the reference range for normal</td>
</tr>
<tr>
<td>3. Endogenous erythroid colony formation in vitro</td>
<td>3. Endogenous erythroid colony formation in vitro</td>
</tr>
</tbody>
</table>

Diagnosis requires the presence of both major criteria and 1 minor criterion or the first major criterion together with 2 minor criteria.

| Essential thrombo-

cytethmia

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sustained platelet count > 450 x 10^9/L</td>
<td>1. Bone marrow with megakaryocyte proliferation and atypia, usually accompanied by either reticulin or collagen fibrosis</td>
</tr>
<tr>
<td>2. Bone marrow biopsy showing mainly megakaryocytic proliferation with increased enlarged, mature megakaryocytes; no significant erythroid or granulocytic increase or left-shift</td>
<td>2. Not satisfying WHO criteria for PV, CML (no BCR-ABL), MDS or other myeloid neoplasm</td>
</tr>
<tr>
<td>3. Not satisfying WHO criteria for PV, CML (no BCR-ABL), MDS or other myeloid neoplasm</td>
<td>3. Demonstration of JAK2617V>F or other clonal marker or, if absent, no evidence for reactive thrombocytosis</td>
</tr>
<tr>
<td>4. Presence of JAK2617V>F or other clonal marker or, if absent, no evidence for secondary marrow fibrosis</td>
<td>4. Palpable splenomegaly</td>
</tr>
</tbody>
</table>

Diagnosis requires meeting all 4 criteria.

| Idiopathic myelo-

defibrosis

<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bone marrow with megakaryocyte proliferation and atypia, usually accompanied by either reticulin or collagen fibrosis</td>
<td>1. Leukoerythroblastosis on blood film</td>
</tr>
<tr>
<td>2. Not satisfying WHO criteria for PV, CML (no BCR-ABL), MDS or other myeloid neoplasm</td>
<td>2. Increased serum lactate dehydrogenase (LDH)</td>
</tr>
<tr>
<td>3. Demonstration of JAK2617V>F or other clonal marker or, if absent, no evidence of secondary marrow fibrosis</td>
<td>3. Anemia</td>
</tr>
<tr>
<td>4. Presence of JAK2617V>F or other clonal marker or, if absent, no evidence of secondary marrow fibrosis</td>
<td>4. Polyploidal myeloblasts</td>
</tr>
</tbody>
</table>

Diagnosis requires meeting all 3 major criteria and 2 minor criteria.

WHO = World Health Organization; PV = Polycythemia vera; MF = Myelofibrosis; CML = Chronic myelogenous leukemia; MDS = Myelodysplastic syndrome; JAK2617V>F = Janus kinase 2 mutation

TABLE 3. Therapeutic recommendations in essential thrombocythemia and polycythemia vera patients

- All patients regardless of risk or platelet count
 - Assess and manage cardiovascular risk factors
 - Low-dose aspirin therapy unless otherwise contraindicated
 - All PV patients: phlebotomize q3–4 weeks to maintain target Hct 45

- High-risk patients or platelet count >1500 x 10^9/L
 - Age >60: hydroxyurea therapy
 - Age <60: hydroxyurea therapy or consider possibility of pegylated interferon

TABLE 4. Lille and IPSS 2009 prognostic scoring systems for primary myelofibrosis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Lille 1996</th>
<th>IPSS 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORS</td>
<td>(at diagnosis of MF)</td>
<td>(at diagnosis of MF)</td>
</tr>
<tr>
<td>Anemia</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Blasts in peripheral blood</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Constitutional symptoms</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Age >65 years</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

CATEGORIES

- Low: 0 factors
 - Median survival 93 months
 - Median survival 135 months
- Intermediate-1: 1 factor
 - Median survival 26 months
 - Median survival 95 months
- Intermediate-2: 2 factors
 - Median survival 48 months
- High: 3 or more factors
 - Median survival 27 months

MF = Myelofibrosis; Hb = Hemoglobin

Adapted from Mesa RA. Hematology Am Soc Hematol Educ Program 2010:115-121.
FEATURE

the hemorrhagic tendency in ET, presumably by normalizing the von Willebrand multiple profile.12 Various identified risk factors have led to a risk-stratified approach for thrombosis prevention in both ET and PV.7,9 Major attention is paid to age >60 years and a history of prior thrombosis in order to separate high- and low-risk groups (Table 3). An intermediate-risk group in ET, defined by age <60 years and cardiovascular risk factors, is less well characterized. Obviously, all cardiovascular risk factors such as dyslipidemia, smoking and hypertension should be uniformly treated. Similarly, many clinicians would also classify any otherwise low-risk patients with an extreme thrombocytosis (count >1500x10^9/L) with the high-risk group, as candidates for cytoreductive therapy.7,9

The optimum effective dose of aspirin remains unclear but 81mg–100 mg/day is usually recommended. In ET, some studies have indicated that daily doses as low as 50 mg may be equally effective for the platelet-dependent vascular complications. Hydroxyurea is usually given at a starting dose of 15-20 mg/kg/day, with the maintenance dose adjusted to keep the platelet count and hematocrit satisfactory without causing other clinically significant cytopenias.9,15 Anagrelide is no longer frequently used because of an increased rate of both myelofibrotic transformation and arterial thrombosis as compared to hydroxyurea-based therapy.6,10 Patients taking hydroxyurea may experience an overall incidence of AML of approximately 3-4%. However, this remains similar to the natural history of untreated patients.29 Peglated interferon may be considered as a cytoreductive option for younger or pregnant patients since it is both non-leukemogenic and non-mutagenic and does not cross the placenta.14 Similarly, the use of busulfan or 32p may be considered for those aged >75 years, where leukemic risk may now be considered acceptable.9,13

MF remains the MPD with the greatest morbidity and shortest life expectancy.11,18 A retrospective international prognostic scoring system (IPSS 2009) developed by the International Working Group for Myelofibrosis Research and Treatment,16 has superseded the Lille classification.17 This system allows for a quantifiable prediction of prognosis and survival18 (Table 4).

MF treatment and followup remain largely supportive except for those 20% of patients who are <55 years of age with high-risk or intermediate-2 disease, where allogeneic stem cell transplantation is an option. The long-term survival of transplantation is approximately 50-60%.9,31 Erythropoietin and danazol may be utilized to treat anemia, and hydroxyurea or splenic radiation may help with symptomatic splenomegaly.11,15 JAK2 inhibitors have recently become available and significantly reduce constitutional symptoms and splenomegaly. Unfortunately, their usefulness appears to be blunted by an accompanying significant incidence of cytopenias and GI symptoms. There has also been a lack of clear benefit in relation to the use of JAK2 inhibitors and complete remissions, survival or prevention of thrombosis in MF, PV and ET.7,15

IRON OVERLOAD IN MULTIPLY-TRANSFUSED ONCOLOGY PATIENTS

There is no physiologic mechanism for excretion of excess iron because total body iron is in a delicate daily balance of 1-2 mg dietary absorption with equivalent loss due to bleeding and sloughed intestinal epithelium. Iron overload results when total body iron exceeds the capacity of the proteins ferritin and transferrin for transport and storage.18 Under these circumstances, free iron distributed in plasma and within cells generates highly toxic free radicals leading to lipid peroxidation, mitochondrial damage, DNA mutations and dysfunctional cellular signalling pathways. These changes in turn produce the end-organ damage associated with iron overload, affecting the heart, liver, endocrine organs and bone marrow.18,19

Each unit of packed red blood cells contains approximately 250 mg of iron, so iron overload is typically present after transfusion of only 15-20 units. A second important mechanism contributing to overload is the cytokine-mediated upregulation of intestinal iron absorption seen with ineffective marrow erythropoiesis. This is particularly prominent in the refractory anemia with ringed sideroblasts (RARS) subtype of MDS, frequently resulting in an iron overload already present prior to transfusion dependency.19,20 Despite any argument that life expectancy in MDS may be too short to be adversely affected by iron toxicity, large registry studies have successfully linked iron exposure (both rate of transfusion and serum ferritin measurements) to reduced survival in lower-risk MDS.18,19 American Medicare data have demonstrated higher cardiac disease and diabetes rates in the transfusion-dependent MDS subset.18,19 Further, 2 cohort studies and a single matched-pair analysis have shown that transfusion-dependent MDS patients treated with iron chelation therapy (ICT) experience superior survival.29,20 Finally, analyses of transplant outcome data reveal that pretransplant serum-ferritin status represents an important independent predictor of posttransplant outcome.18 In MDS, there is also some evidence that iron overload may predispose to more rapid disease evolution and leukemic transformation.21

Thus, pending the forthcoming results of the TELESTO (Myelodysplastic Syndromes [MDS] Event Free Survival With Iron Chelation Therapy) multinational randomized
controlled trial, current consensus is to offer iron chelation therapy to transfusion-dependent MDS patients with proven iron overload. According to the 2008 Canadian guideline, eligibility criteria include patients with low- or intermediate-1 risk MDS, a serum ferritin >1000 µg/L and life expectancy >1 year, as well as to all transplant-eligible patients, regardless of risk factors. In Canada, 2 iron-chelating agents are licensed. Desferrioxamine is administered by continuous parenteral infusion over 12-15 hours daily, 5-7 days per week. In addition to the associated inconvenience and cost, other adverse effects include retinal and otoxicity. The newer oral agent deferasirox has shown effectiveness in reducing total body iron stores in a variety of chronic anemias including MDS, although data confirming survival advantage are currently lacking. Other adverse effects include rash, diarrhea, elevated serum creatinine and rare hepatotoxicity. However, side effects can usually be managed with proper dosing modifications (Table 5).

Deferasirox is typically started at 20-30 mg/kg/day with appropriate dosage changes made every 1-3 months. Approximately 75% of patients are controlled at 20 mg/kg/day.

FOLLOWUP OF THE MULTIPLY-TRANSFUSED PATIENT

Ensure that a mechanism is in place for monitoring the number of transfusions as well as liver function and serum ferritin associated with each transfusion. Monitoring should take place every 1-2 months and is usually best coordinated with staff from the local blood bank.

Patients on deferasirox require monthly monitoring for liver function, serum creatinine, urinalysis, serum ferritin and transferrin saturation. Baseline audiometry and ophthalmic testing are recommended with annual followup.

References

Drs. Bridge and Ahmed report no conflicts of interest relevant to this article. Dr. Wells has received speaker honoraria from Celgene Canada and Novartis Canada.

©2011 Parkhurst, publisher of Oncology Exchange. All rights reserved.